Mathematics in Lean
  • 1. Introduction
  • 2. Basics
  • 3. Logic
  • 4. Sets and Functions
  • 5. Elementary Number Theory
  • 6. Structures
  • 7. Hierarchies
  • 8. Groups and Rings
  • 9. Linear algebra
  • 10. Topology
  • 11. Differential Calculus
  • 12. Integration and Measure Theory
  • Index
Mathematics in Lean
  • Mathematics in Lean
  • View page source

Mathematics in Lean

  • 1. Introduction
    • 1.1. Getting Started
    • 1.2. Overview
  • 2. Basics
    • 2.1. Calculating
    • 2.2. Proving Identities in Algebraic Structures
    • 2.3. Using Theorems and Lemmas
    • 2.4. More examples using apply and rw
    • 2.5. Proving Facts about Algebraic Structures
  • 3. Logic
    • 3.1. Implication and the Universal Quantifier
    • 3.2. The Existential Quantifier
    • 3.3. Negation
    • 3.4. Conjunction and Iff
    • 3.5. Disjunction
    • 3.6. Sequences and Convergence
  • 4. Sets and Functions
    • 4.1. Sets
    • 4.2. Functions
    • 4.3. The Schröder-Bernstein Theorem
  • 5. Elementary Number Theory
    • 5.1. Irrational Roots
    • 5.2. Induction and Recursion
    • 5.3. Infinitely Many Primes
  • 6. Structures
    • 6.1. Defining structures
    • 6.2. Algebraic Structures
    • 6.3. Building the Gaussian Integers
  • 7. Hierarchies
    • 7.1. Basics
    • 7.2. Morphisms
    • 7.3. Sub-objects
  • 8. Groups and Rings
    • 8.1. Monoids and Groups
    • 8.2. Rings
  • 9. Linear algebra
    • 9.1. Vector spaces and linear maps
    • 9.2. Subspaces and quotients
    • 9.3. Endomorphisms
    • 9.4. Matrices, bases and dimension
  • 10. Topology
    • 10.1. Filters
    • 10.2. Metric spaces
    • 10.3. Topological spaces
  • 11. Differential Calculus
    • 11.1. Elementary Differential Calculus
    • 11.2. Differential Calculus in Normed Spaces
  • 12. Integration and Measure Theory
    • 12.1. Elementary Integration
    • 12.2. Measure Theory
    • 12.3. Integration
Next

© Copyright 2020, Jeremy Avigad, Patrick Massot.

Built with Sphinx using a theme provided by Read the Docs.