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CHAPTER

ONE

INTRODUCTION

This tutorial can be viewed as a companion to Theorem Proving in Lean, which presents Lean as a system for
building mathematical libraries and stating and proving mathematical theorems. From that perspective, the
point of Lean is to implement a formal axiomatic framework in which one can define mathematical objects
and reason about them.

But expressions in Lean have a computational interpretation, which is to say, they can be evaluated. Any
closed term of type nat – that is, any term of type nat without free variables – evaluates to a numeral, as
long as it is defined in the computational fragment of Lean’s foundational framework. Similarly, any closed
term of type list nat evaluates to a list of numerals, and any closed term of type bool evaluates either to
the boolean value tt, for “true,” or ff, for “false.”

This provides another perspective on Lean: instead of thinking of it as a theorem prover whose language just
happens to have a computational interpretation, think of it as a programming language that just happens to
come equipped with a rich specification language and an interactive environment for proving that programs
meet their specifications. The specification language and proof system are quite powerful, rich enough, in
fact, to include all conventional mathematics.

Lean’s underlying logical framework, the Calculus of Inductive Constructions, constitutes a surprisingly
good programming language. It is expressive enough to define all sorts of data structures, and it supports
powerful abstractions. Programs written in the language can be evaluated efficiently by Lean’s virtual-
machine interpreter, and work is underway to support code extraction and efficient compilation in a future
version of Lean.

Viewed from a computational perspective, the Calculus of Inductive Constructions is an instance of a purely
functional programming language. This means that a program in Lean is simply an expression whose value
is determined compositionally from the values of the other expressions it refers to, independent of any sort
of ambient state of computation. There is no notion of storing a result in memory or changing the value
of a global variable; computation is just evaluation of expressions. This paradigm makes it easier to reason
about programs and verify their correctness. At the same time, we will see that Lean incorporates concepts
and abstractions that make it feasible to use this paradigm in practice.

The underlying foundational framework imposes one restriction that is alien to most programming languages,
namely, that every program is terminating. So, for example, every “while” loop has to be explicitly bounded,
though, of course, we can consider the result of iterating an arbitrary computation n times for any given
natural number n. Lean provides flexible mechanisms for structural and well-founded recursion, allowing
us to define functions in natural ways. At the same, the system provides complementary mechanisms for
proving claims, using inductive principles that capture the structure of the function definitions.

One novel feature of Lean is that its programming language is also a metaprogramming language, which
is to say, it can be used to extend the functionality of Lean itself. To that end, Lean allows us to mark
metaprograms with the keyword meta. This does two things:

• Metaprograms can use arbitrary recursive calls, with no concern for termination.

1

https://leanprover.github.io/theorem_proving_in_lean/


Programming in Lean, Release 3.4.2

• Metaprograms can access metaconstants, that is, primitive functions and objects that are implemented
internally in Lean and are not meant to be trusted by the foundational framework.

To summarize, we can use Lean in any of the following ways:

• as a programming language

• as a system for verifying properties of programs

• as a system for writing metaprograms, that is, programs that extend the functionality of Lean itself

2 Chapter 1. Introduction



CHAPTER

TWO

TYPES AND TERMS

Lean’s foundational framework is a version of a logical system known as the Calculus of Inductive Con-
structions, or CIC. Programming in Lean amounts to writing down expressions in the system, and then
evaluating them. You should keep in mind that, as a full-blown foundation for mathematics, the CIC is
much more than a programming language. One can define all kinds of mathematical objects: number sys-
tems, ranging from the natural numbers to the complex numbers; algebraic structures, from semigroups to
categories and modules over an arbitrary ring; limits, derivatives, and integrals, and other components of
real and complex analysis; vector spaces and matrices; measure spaces; and much more. This provides an
environment in which one can define data types alongside other mathematical objects, and write programs
alongside mathematical proofs.

Terms in the Calculus of Inductive Constructions are therefore used to represent mathematical objects,
programs, data types, assertions, and proofs. In the CIC, every term has a type, which indicates what sort
of object it and how it behaves computationally. This chapter is a quick tour of some of the terms we can
write in Lean. For a more detailed and exhaustive account, see Theorem Proving in Lean.

2.1 Some Basic Types

In Lean:

• #check can be used a check the type of an expression.

• #print can be used to print information about an identifier, for example, the definition of a defined
constant.

• #reduce can be used to normalize a symbolic expression.

• #eval can be used to run the bytecode-block evaluator on any closed term that has a computational
interpretation.

Lean’s standard library defines a number of data types, such as nat, int, list, and bool.

#check nat
#print nat

#check int
#print int

#check list
#print list

#check bool
#print bool

3
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You can use the unicode-block symbols N and Z for nat and int, respectively. The first can be entered with
\N or \nat, and the second can be entered with \Z or \int.

The library includes standard operations on these types:

#check 3 + 6 * 9
#eval 3 + 6 * 9

#check 1 :: 2 :: 3 :: [4, 5] ++ [6, 7, 8]
#eval 1 :: 2 :: 3 :: [4, 5] ++ [6, 7, 8]

#check tt && (ff || tt)
#eval tt && (ff || tt)

By default, a numeral denotes a natural number. You can always specify an intended type t for an expression
e by writing (e : t). In that case, Lean does its best to interpret the expression as an object of the given
type, and raises an error if it does not succeed.

#check (3 : Z)
#check (3 : Z) + 6 * 9
#check (3 + 6 * 9 : Z)

#eval (3 + 6 * 9 : Z)

We can also declare variables ranging over elements and types.

variables m n k : N
variables u v w : Z
variable α : Type
variables l1 l2 : list N
variables s1 s2 : list α
variable a : α

#check m + n * k
#check u + v * w
#check m :: l1 ++ l2
#check s1 ++ a :: s2

The standard library adopts the convention of using the Greek letters α, β, and γ to range over types. You
can type these with \a, \b, and \g, respectively. You can type subscripts with \0, \1, \2, and so on.

Lean will insert coercions automatically:

#check v + m

The presence of a coercion is indicated by Lean’s output, v + ↑m : Z. Since Lean infers types sequentially
as it processes an expression, you need to indicate the coercion manually if you write the arguments in the
other order:

#check ↑m + v

You can type the up arrow by writing \u. This is notation for a generic coercion function, and Lean finds
the appropriate one using type classes, as described below. The notations +, *, ++ similarly denote functions
defined generically on any type that supports the relevant operations:

4 Chapter 2. Types and Terms
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#check @has_add.add
#print has_add.add

#check @has_mul.mul
#print has_mul.mul

#check @append
#print append

Here, the @ symbol before the name of the function indicates that Lean should display arguments that are
usually left implicit. These are called, unsurprisingly, implicit arguments. In the examples above, type class
resolution finds the relevant operations, which are declared in the relevant namespaces.

#check nat.add
#check nat.mul
#check list.append
#check list.cons

When generic functions and notations are available, however, it is usually better to use them, because Lean’s
automation is designed to work well with generic functions and facts. Incidentally, when infix notation is
defined for a binary operation, Lean’s parser will let you put the notation in parentheses to refer to the
operation in prefix form:

#check (+)
#check (*)
#check (≤)

Lean knows about Cartesian products and pairs:

variables α β : Type
variables (a1 a2 : α) (b : β) (n : N)
variables (p : α × β) (q : α × N)

#check α × β
#check (a1, a2)
#check (n, b)
#check p.1
#check p.2

#reduce (n, b).1
#reduce (2, 3).1
#eval (2, 3).1

It interprets tuples as iterated products, associated to the right:

variables α β : Type
variables (a1 a2 : α) (b : β) (n : N)

#check (n, a1, b)
#reduce (n, a1, b).2
#reduce (n, a1, b).2.2

Lean also knows about subtypes and option types, which are described in the next chapter.

2.1. Some Basic Types 5
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2.2 Defining Functions

In Lean, one can define a new constant with the definition command, which can be abbreviated to def.

definition foo : N := 3

def bar : N := 2 + 2

As with the #check command, Lean first attempts to elaborate the given expression, which is to say, fill in
all the information that is left implicit. After that, it checks to make sure that the expression has the stated
type. Assuming it succeeds, it creates a new constant with the given name and type, associates it to the
expression after the :=, and stores it in the environment.

The type of functions from α to β is denoted α → β. We have already seen that a function f is applied to
an element x in the domain type by writing f x.

variables α β : Type
variables (a1 a2 : α) (b : β) (n : N)
variables f : N → α
variables g : α → β → N

#check f n
#check g a1
#check g a2 b
#check f (g a2 b)
#check g (f (g a2 b))

Conversely, functions are introduced using λ abstraction.

variables (α : Type) (n : N) (i : Z)

#check λ x : N, x + 3
#check λ x, x + 3
#check λ x, x + n
#check λ x, x + i
#check λ x y, x + y + 1
#check λ x : α, x

As the examples make clear, you can leave out the type of the abstracted variable when it can be inferred.
The following two definitions mean the same thing:

def foo : N → N := λ x : N, x + 3
def bar := λ x, x + 3

Instead of using a lambda, you can abstract variables by putting them before the colon:

def foo (x y : N) : N := x + y + 3
def bar (x y) := x + y + 3

You can even test a definition without adding it to the environment, using the example command:

example (x y) := x + y + 3

When variables have been declared, functions implicitly depend on the variables mentioned in the definition:

6 Chapter 2. Types and Terms
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variables (α : Type) (x : α)
variables m n : N

def foo := x
def bar := m + n + 3
def baz (k) := m + k + 3

#check foo
#check bar
#check baz

Evaluating expressions involving abstraction and application has the expected behavior:

#reduce (λ x, x + 3) 2
#eval (λ x, x + 3) 2

def foo (x : N) : N := x + 3

#reduce foo 2
#eval foo 2

Both expressions evaluate to 5.

In the CIC, types are just certain kinds of objects, so functions can depend on types. For example, the
following defines a polymorphic identity function:

def id (α : Type) (x : α) : α := x

#check id N 3
#eval id N 3

#check id

Lean indicates that the type of id is Π α : Type, α → α. This is an example of a pi type, also known as
a dependent function type, since the type of the second argument to id depends on the first.

It is generally redundant to have to give the first argument to id explicitly, since it can be inferred from the
second argument. Using curly braces marks the argument as implicit.

def id {α : Type} (x : α) : α := x

#check id 3
#eval id 3

#check id

In case an implicit argument follows the last given argument in a function application, Lean inserts the
implicit argument eagerly and tries to infer it. Using double curly braces {{ … }}, or the unicode-block
equivalents obtained with \{{ and \}}, tells the parser to be more conservative about inserting the argument.
The difference is illustrated below.

def id1 {α : Type} (x : α) : α := x
def id2 {|α : Type|} (x : α) : α := x

(continues on next page)

2.2. Defining Functions 7
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(continued from previous page)

#check (id1 : N → N)
#check (id2 : Π α : Type, α → α)

In the next section, we will see that Lean supports a hierarchy of type universes, so that the following
definition of the identity function is more general:

universe u
def id {α : Type u} (x : α) := x

If you #check @list.append, you will see that, similarly, the append function takes two lists of elements of
any type, where the type can occur in any type universe.

Incidentally, subsequent arguments to a dependent function can depend on arbitrary parameters, not just
other types:

variable vec : N → Type
variable foo : Π {n : N}, vec n → vec n
variable v : vec 3

#check foo v

This is precisely the sense in which dependent type theory is dependent.

The CIC also supports recursive definitions on inductively defined types.

open nat

def exp (x : N) : N → N
| 0 := 1
| (succ n) := exp n * (succ n)

We will provide lots of examples of those in the next chapter.

2.3 Defining New Types

In the version of the Calculus of Inductive Constructions implemented by Lean, we start with a sequence
of type universes, Sort 0, Sort 1, Sort 2, Sort 3, … The universe Sort 0 is called Prop and has special
properties that we will describe later. Type u is a syntactic sugar for Sort (u+1). For each u, an element
t : Type u is itself a type. If you execute the following,

universe u
#check Type u

you will see that each Type u itself has type Type (u+1). The notation Type is shorthand for Type 0, which
is a shorthand for Sort 1.

In addition to the type universes, the Calculus of Inductive Constructions provides two means of forming
new types:

• pi types

• inductive types

Lean provides an additional means of forming new types:

8 Chapter 2. Types and Terms
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• quotient types

We discussed pi types in the last section. Quotient types provide a means of defining a new type given a
type and an equivalence relation on that type. They are used in the standard library to define multisets,
which are represented as lists that are considered the same when one is a permutation of another.

Inductive types are surprisingly useful. The natural numbers are defined inductively:

inductive nat : Type
| zero : nat
| succ : nat → nat

So is the type of lists of elements of a given type α:

universe u

inductive list (α : Type u) : Type u
| nil : list
| cons : α → list → list

The booleans form an inductive type, as do, indeed, any finitely enumerated type:

inductive bool : Type
| tt : bool
| ff : bool

inductive Beatle : Type
| John : Beatle
| Paul : Beatle
| George : Beatle
| Ringo : Beatle

So are the type of binary trees, and the type of countably branching trees in which every node has children
indexed by the type of natural numbers:

inductive binary_tree : Type
| empty : binary_tree
| cons : binary_tree → binary_tree → binary_tree

inductive nat_tree : Type
| empty : nat_tree
| sup : (N → nat_tree) → nat_tree

What these examples all have in common is that the associated types are built up freely and inductively by
the given constructors. For example, we can build some binary trees:

#check binary_tree.empty
#check binary_tree.cons (binary_tree.empty) (binary_tree.empty)

If we open the namespace binary_tree, we can use shorter names:

open binary_tree

#check cons empty (cons (cons empty empty) empty)

2.3. Defining New Types 9
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In the Lean library, the identifier empty is used as a generic notation for things like the empty set, so
opening the binary_tree namespaces means that the constant is overloaded. If you write #check empty,
Lean will complain about the overload; you need to say something like #check (empty : binary_tree) to
disambiguate.

The inductive command axiomatically declares all of the following:

• A constant, to denote the new type.

• The associated constructors.

• A corresponding eliminator.

The latter gives rise to the principles of recursion and induction that we will encounter in the next two
chapters.

We will not give a precise specification of the inductive data types allowed by Lean, but only note here that
the description is fairly small and straightforward, and can easily be given a set-theoretic interpretation.
Lean also allows mutual inductive types and nested inductive types. As an example, in the definition below,
the type under definition appears as a parameter to the list type:

inductive tree (α : Type) : Type
| node : α → list tree → tree

Such definitions are not among Lean’s axoimatic primitives; rather, they are compiled down to more primitive
constructions.

2.4 Records and Structures

When computer scientists bundle data together, they tend to call the result a record. When mathematicians
do the same, they call it a structure. Lean uses the keyword structure to introduce inductive definitions
with a single constructor.

structure color : Type :=
mk :: (red : N) (green : N) (blue : N) (name : string)

Here, mk is the constructor (if omitted, Lean assumes it is mk by default), and red, green, blue, and name
project the four values that are used to construct an element of color.

def purple := color.mk 150 0 150 "purple"

#eval color.red purple
#eval color.green purple
#eval color.blue purple
#eval color.name purple

Because records are so important, Lean provides useful notation for dealing with them. For example, when
the type of the record can be inferred, Lean allows the use of anonymous constructors ⟨ … ⟩, entered as \<
and \>, or the ascii equivalents (| and |). Similarly, one can use the notation .1, .2, and so on for the
projections.

def purple : color := ⟨150, 0, 150, "purple"⟩

#eval purple.1
#eval purple.2

(continues on next page)
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(continued from previous page)

#eval purple.3
#eval purple.4

Alternatively, one can use the notation . to extract the relevant projections:

#eval purple.red
#eval purple.green
#eval purple.blue
#eval purple.name

When the type of the record can be inferred, you can also use the following notation to build an instance,
explicitly naming each component:

def purple : color :=
{ red := 150, blue := 0, green := 150, name := "purple" }

You can also use the with keyword for record update, that is, to define an instance of a new record by
modifying an existing one:

def mauve := { purple with green := 100, name := "mauve" }

#eval mauve.red
#eval mauve.green

Lean provides extensive support for reasoning generically about algebraic structures, in particular, allowing
the inheritance and sharing of notation and facts. Chief among these is the use of class inference, in a
manner similar to that used by functional programming languages like Haskell. For example, the Lean
library declares the structures has_one and has_mul to support the generic notation 1 and * in structures
which have a one and binary multiplication:

universe u
variables {α : Type u}

class has_one (α : Type u) := (one : α)
class has_mul (α : Type u) := (mul : α → α → α)

The class command not only defines a structure (in the cases above, each storing only one piece of data),
but also marks them as targets for class inference. The symbol * is notation for the identifier has_mul.mul,
and if you check the type of has_mul.mul, you will see there is an implicit argument for an element of
has_mul:

#check @has_mul.mul

The sole element of the has_mul structure is the relevant multiplication, which should be inferred from the
type α of the arguments. Given an expression a * b where a and b have type α, Lean searches through
instances of has_mul that have been declared to the system, in search of one that matches the type α. When
it finds such an instance, it uses that as the argument to mul.

With has_mul and has_one in place, some of the most basic objects of the algebraic hierarchy are defined
as follows:

universe u
variables {α : Type u}

(continues on next page)
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(continued from previous page)

class semigroup (α : Type u) extends has_mul α :=
(mul_assoc : ∀ a b c : α, a * b * c = a * (b * c))

class comm_semigroup (α : Type u) extends semigroup α :=
(mul_comm : ∀ a b : α, a * b = b * a)

class monoid (α : Type u) extends semigroup α, has_one α :=
(one_mul : ∀ a : α, 1 * a = a) (mul_one : ∀ a : α, a * 1 = a)

There are a few things to note here. First, these definitions are introduced as class definitions also. This
marks them as eligible for class inference, enabling Lean to find the semigroup, comm_semigroup, or monoid
structure associated to a type, α, when necessary. The extends keyword does two things: it defines the new
structure by adding the given fields to those of the structures being extended, and it declares any instance
of the new structure to be an instance of the previous ones. Finally, notice that the new elements of these
structures are not data, but, rather, properties that the data is assumed to satisfy. It is a consequence of the
encoding of propositions and proofs in dependent type theory that we can treat assumptions like associativity
and commutativity in a manner similar to data. We will discuss this encoding in a later chapter.

Because any monoid is an instance of has_one and has_mul, Lean can interpret 1 and * in any monoid.

variables (M : Type) [monoid M]
variables a b : M

#check a * 1 * b

The declaration [monoid M] declares a variable ranging over the monoid structure, but leaves it anonymous.
The variable is automatically inserted in any definition that depends on M, and is marked for class inference.
We can now define operations generically. For example, the notion of squaring an element makes sense in
any structure with a multiplication.

universe u
def square {α : Type u} [has_mul α] (x : α) : α := x * x

Because monoid is an instance of has_mul, we can then use the generic squaring operation in any monoid.

variables (M : Type) [monoid M]
variables a b : M

#check square a * square b

2.5 Mathematics and Computation

Lean aims to support both mathematical abstraction alongside pragmatic computation, allowing both to
interact in a common foundational framework. Some users will be interested in viewing Lean as a program-
ming language, and making sure that every assertion has direct computational meaning. Others will be
interested in treating Lean as a system for reasoning about abstract mathematical objects and assertions,
which may not have straightforward computational interpretations. Lean is designed to be a comfortable
environment for both kinds of users.

But Lean is also designed to support users who want to maintain both world views at once. This includes
mathematical users who, having developed an abstract mathematical theory, would then like to start com-

12 Chapter 2. Types and Terms
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puting with the mathematical objects in a verified way. It also includes computer scientists and engineers
who, having written a program or modeled a piece of hardware or software in Lean, would like to verify
claims about it against a background mathematical theory of arithmetic, analysis, dynamical systems, or
stochastic processes.

Lean employs a number of carefully chosen devices to support a clean and principled unification of the two
worlds. Chief among these is the inclusion of a type Prop of propositions, or assertions. If p is an element
of type Prop, you can think of an element t : p as representing evidence that p is true, or a proof of p,
or simply the fact that p holds. The element t, however, does not bear any computational information. In
contrast, if α is an element of Type u for any u greater than 0 and t : α, then t contains data, and can
be evaluated.

Lean allows us to to define nonconstructive functions using familiar classical principles, provided we mark
the associated definitions as noncomputable.

open classical
local attribute [instance] prop_decidable

noncomputable def choose (p : N → Prop) : N :=
if h : (∃ n : N, p n) then some h else 0

noncomputable def inverse (f : N → N) (n : N) : N :=
if h : (∃ m : N, f m = n) then some h else 0

In this example, declaring the type class instance prop_decidable allows us to use a classical definition by
cases, depending on whether an arbitrary proposition is true or false. Given an arbitrary predicate p on the
natural numbers, choose p returns an n satisfying p n if there is one, and 0 otherwise. For example, p n
may assert that n code-blocks a halting computation sequence for some Turing machine, on a given input.
In that case, choose p magically decides whether or not such a computation exists, and returns one if it
doesn’t. The second definition makes a best effort to define an inverse to a function f from the natural
numbers to the natural numbers, mapping each n to some m such that f m = n, and zero otherwise.

Lean cannot (and does not even try) to generate bytecode for noncomputable functions. But expressions t
: α, where α is a type of data, can contain subexpressions that are elements of Prop, and these can refer to
nonconstructive objects. During the extraction of bytecode, these elements are simply ignored, and do not
contribute to the computational content of t.

For that reason, abstract elements in Lean’s library can have computational refinements. For example, for
every type, α, there is another type, set α, of sets of elements of α and some sets satisfy the property of
being finite. Saying that a set is finite is equivalent to saying that there exists a list that contains exactly
the same elements. But this statement is a proposition, which means that it is impossible to extract such a
list from the mere assertion that it exists. For that reason, the standard library also defines a type finset
α, which is better suited to computation. An element s : finset α is represented by a list of elements
of α without duplicates. Using quotient types, we can arrange that lists that differ up to permutation are
considered equal, and a defining principle of quotient types allows us to define a function on finset α in
terms of any list that represents it, provided that we show that our definition is invariant under permutations
of the list. Computationally, an element of finset α is just a list. Everything else is essentially a contract
that we commit ourselves to obeying when working with elements of finset α. The contract is important to
reasoning about the results of our computations and their properties, but it plays no role in the computation
itself.

As another example of the interaction between propositions and data, consider the fact that we do not always
have algorithms that determine whether a proposition is true (consider, for example, the proposition that
a Turing machine halts). In many cases, however, we do. For example, assertions m = n and m < n about
natural numbers, and Boolean combinations of these, can be evaluated. Propositions like this are said to
be decidable. Lean’s library uses class inference to infer the decidability, and when it succeeds, you can use
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a decidable property in an if … then … else conditional statement. Computationally, what is going on is
that class inference finds the relevant procedure, and the bytecode evaluator uses it.

One side effect of the choice of CIC as a foundation is that all functions we define, computational or not, are
total. Once again, dependent type theory offers various mechanisms that we can use to restrict the range of
applicability of a function, and some will be described later on.
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CHAPTER

THREE

BASIC PROGRAMMING

This chapter introduces the basics of using Lean as a programming language. It is not a proper introduction
to programming, however. There are a number of good introductions to functional programming, including
Learn You a Haskell for Great Good. If functional programming is new to you, you might find it helpful to
read another text and port the examples and exercises to Lean.

3.1 Evaluating Expressions

When translating expressions to byte code, Lean’s virtual machine evaluator ignores type information en-
tirely. The whole elaborate typing schema of the CIC serves to ensure that terms make sense, and mean
what we think they mean. Type checking is entirely static: when evaluating a term t of type α, the byte-
code evaluator ignores α, and simply computes the value of t, as described below. As noted above, any
subexpressions of t whose type is an element of Prop are computationally irrelevant, and they are ignored
too.

The evaluation of expressions follows the computational rules of the CIC. In particular:

• To evaluate a function application (λ x, s) t, the bytecode evaluator evaluates t, and then evaluates
s with x instantiated to t.

• To evaluate an eliminator for an inductively defined type — in other words, a function defined by
pattern matching or recursion — the bytecode evaluator waits until all the arguments are given,
evaluates the first one, and, on the basis of the result, applies the relevant case or recursive call.

The evaluation strategy for function application is known as eager evaluation: when applying a function f
to as sequence of arguments t1 … tn, the arguments are evaluated first, and then the body of the function
is evaluated with the results.

We have already seen that Lean can evaluate expressions involving natural numbers, integers, lists, and
booleans.

#eval 22 + 77 * 11
#eval tt && (ff || tt)
#eval [1, 2, 3] ++ 4 :: [5, 6, 7]

Lean can evaluate conditional expressions:

#eval if 11 > 5 ∧ ff then 27 else 33 + 12

#eval if 7 ∈ [1, 3, 5] then "hooray!" else "awww..."

Here is a more interesting example:

15
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def craps (roll : N) (come_out : bool) (point : N) : string :=
if (come_out ∧ (roll = 7 ∨ roll = 11)) ∨ (¬ come_out ∧ roll = point) then
"You win!"

else if (come_out ∧ roll ∈ [2, 3, 12]) ∨ (¬ come_out ∧ roll = 7) then
"You lose!"

else
"Roll again."

#eval craps 7 tt 4
#eval craps 11 ff 2

The standard library defines a number of common operations on lists:

#eval list.range 100

#eval list.map (λ x, x * x) (list.range 100)

#eval list.filter (λ x, x > 50) (list.range 100)

#eval list.foldl (+) 0 (list.range 100)

A char is a natural number that is less than 255. You can enter the character “A,” for example, by typing
'A'. Lean defines some basic operations on characters:

open char

#eval to_lower 'X'
#eval to_lower 'x'
#eval to_lower '!'

#eval to_lower '!'

#eval if is_punctuation '?' then tt else ff

In the example above, we have to tell Lean how to define a decision procedure for the predicate
is_punctuation. We do this simply by unfolding the definition and asking Lean to use the inferred decision
procedure for list membership.

Strings can be mapped to lists of characters and back, so operations on lists and be used with strings.

namespace string

def filter (p : char → Prop) [decidable_pred p] (s : string) : string :=
((s.to_list).filter p).as_string

def map (f : char → char) (l : string) : string :=
(l.to_list.map f).as_string

def to_lower (s : string) : string := s.map char.to_lower

def reverse (s : string) : string := s.to_list.reverse.as_string

def remove_punctuation (s : string) : string :=
s.filter (λ c, ¬ char.is_punctuation c)

(continues on next page)
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(continued from previous page)

end string

We can use these to write a procedure that tests to see whether a given sentence is a palindrome.

def test_palindrome (s : string) : bool :=
let s' := to_lower (remove_punctuation s) in
if s' = reverse s' then tt else ff

#eval test_palindrome "A man, a plan, a canal -- Panama!"
#eval test_palindrome "Madam, I'm Adam!"
#eval test_palindrome "This one is not even close."

3.2 Recursive Definitions

Lean supports definition of functions by structural recursion on its arguments.

open nat

def fact : N → N
| 0 := 1
| (succ n) := (succ n) * fact n

#eval fact 100

Lean recognizes that addition on the natural numbers is defined in terms of the succ constructor, so you
can also use more conventional mathematical notation.

def fact : N → N
| 0 := 1
| (n+1) := (n+1) * fact n

Lean will compile definitions like these down to the primitives of the Calculus of Inductive Constructions,
though in the case of fact it is straightforward to define it from the primitive recursion principle directly.

Lean’s function definition system can handle more elaborate forms of pattern matching with defaults. For
example, the following function returns true if and only if one of its arguments is positive.

def foo : N → N → N → bool
| (n+1) _ _ := tt
| _ (m+1) _ := tt
| _ _ (k+1) := tt
| _ _ _ := ff

We can define the sequence of Fibonacci numbers in a natural way:

def fib : N → N
| 0 := 1
| 1 := 1
| (n+2) := fib (n+1) + fib n

#eval fib 10
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When evaluating fib, the virtual machine uses the defining equations. As a result, this naive implementation
runs in exponential time, since the computation of fib (n+2) calls for two independent computations of fib
n, one hidden in the computation of fib (n+1). The following more efficient version defines an auxiliary
function that computes the values in pairs:

def fib_aux : N → N × N
| 0 := (0, 1)
| (n+1) := let p := fib_aux n in (p.snd, p.fst + p.snd)

def fib (n) := (fib_aux n).snd

#eval fib 1000

A similar solution is to use additional arguments to accumulate partial results:

def fib_aux : N → N → N → N
| 0 a b := b
| (n+1) a b := fib_aux n b (a+b)

def fib (n) := fib_aux n 0 1

#eval fib 1000

Functions on lists are naturally defined by structural recursion. These definitions are taken from the standard
library:

universe u
variable {α : Type u}

def append : list α → list α → list α
| [] l := l
| (h :: s) t := h :: (append s t)

def mem : α → list α → Prop
| a [] := false
| a (b :: l) := a = b ∨ mem a l

def concat : list α → α → list α
| [] a := [a]
| (b::l) a := b :: concat l a

def length : list α → nat
| [] := 0
| (a :: l) := length l + 1

def empty : list α → bool
| [] := tt
| (_ :: _) := ff

Notice that mem defines a predicate on lists, which is to say, mem a l asserts that a is a member of the list l.
To use it computationally, say, in an if-then-else clause, one needs to establish that this instance is decidable,
or (what comes to essentially the same thing) define a version that takes values in type bool instead.
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3.3 Inhabited Types, Subtypes, and Option Types

In the Calculus of Inductive Constructions, every term denotes something. In particular, if f has a function
type and t has the corresponding argument type, the f t denotes some object. In other words, a function
defined on a type has to be define on every element of that type, so that every function is total on its domain.

It often happens that a function is naturally defined only on some elements of a type. For example, one can
take the head of a list only if it is nonempty, and one can divide one rational number or real number by
another as long as the second is nonzero. There are a number of ways of handling that in dependent type
theory.

The first, and simplest, is to totalize the function, by assigning an arbitrary or conveniently chosen value
where the function would otherwise be undefined. For example, it is convenient to take x / 0 to be equal to
0. A downside is that this can run counter to mathematical intuitions. But it does give a precise meaning
to the division symbol, even if it is a nonconventional one. (The treatment of undefined values in ordinary
mathematics is often ambiguous and sloppy anyhow.)

It helps that the Lean standard library defines a type class, inhabited α, that can be used to keep track of
types that are known to have at least one element, and to infer such an element. The expressions default
α and arbitrary α both denote the element that is inferred. The second is unfolded less eagerly by Lean’s
elaborator, and should be used to indicate that you do not want to make any assumptions about the value
returned (though ultimately nothing can stop a theory making use of the fact that the arbitrary element of
nat, say, is chosen to be zero). The list library defines the head function as follows:

universe u
variable {α : Type u}

def head [inhabited α] : list α → α
| [] := default α
| (a :: l) := a

Another possibility is to add a precondition to the function. We can do this because in the CIC, an assertion
can be treated as an argument to a function. The following function explicitly requires evidence that the
argument l is not the empty list.

def first : Π (l : list α), l ̸= [] → α
| [] h := absurd rfl h
| (a :: l0) h := a

This contract ensures that first will never be called to evaluate the first element of an empty list. The
check is entirely static; the evidence is ignored by the bytecode evaluator.

A closely related solution is to use a subtype. This simply bundles together the data and the precondition.

def first' : {l0 // l0 ̸= []} → α :=
λ l, first l.1 l.2

Here, the type {l0 // l0 ̸= []} consists of (dependent) pairs, where the first element is a list and the
second is evidence that the list is nonempty. In a similar way, {n // (n : Z) > 0} denotes the type
of positive integers. Using subtypes and preconditions can be inconvenient at times, because using them
requires a mixture of proof and calculation. But subtypes are especially useful when the constraints are
common enough that is pays to develop a library of functions that take and return elements satisfying them
— in other words, when the subtype is really worthy of being considered a type in its own right.

Yet another solution is to signal the success or failure of the function on the output, using an option type.
This is defined in the standard library as follows:

3.3. Inhabited Types, Subtypes, and Option Types 19
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inductive option (α : Type u)
| none {} : option
| some : α → option

You can think of the return value none as signifying that the function is undefined at that point, whereas some
a denotes a return value of a. (The inscription {} after the none constructor indicates that the argument
α should be marked implicit, even though it cannot be inferred from other arguments.) For example, then
nth element function is defined in the list library as follows:

def nth : list α → nat → option α
| [] n := none
| (a :: l) 0 := some a
| (a :: l) (n+1) := nth l n

To use an element oa of type option α, one typically has to pattern match on the cases none and some α.
Doing this manually in the course of a computation can be tedious, but it is much more pleasant and natural
using monads, which we turn to next.

3.4 Input and Output

Lean can support programs that interact with the outside world, querying users for input and presenting
them with output during the course of a computation. Lean’s foundational framework has no model of “the
real world,” but Lean declares get_str and put_str commands to get an input string from the user and
write an input string to output, respectively. Within the foundational system, these are treated as black
box operations. But when programs are evaluated by Lean’s virtual machine or when they are translated to
C++, they have the expected behavior. Here, for example, is a program that prints “hello world”:

import system.io
open io

def hello_world : io unit :=
put_str "hello world\n"

#eval hello_world

The next example prints the first 100 squares:

import system.io
open io

def print_squares : N → io unit
| 0 := return ()
| (n+1) := print_squares n >>

put_str (to_string n ++ "^2 = " ++
to_string (n * n) ++ "\n")

#eval print_squares 100

We will explain the data type io unit in Chapter 4. Although this program has a real world side effect of
sending output to the screen when run, that effect is invisible to the formal foundation. The print axioms
command shows that the expressions hello_world and print_squares depend on constants that have been
added to the axiomatic foundation to implement the io primitives.
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#print axioms hello_world

Within the logical foundation, these constants are entirely opaque, objects about which that the axiomatic
system has nothing to say. In this way, we can prove properties of programs involving io that do not depend
in any way on the particular results of the input and output.

3.4. Input and Output 21



Programming in Lean, Release 3.4.2

22 Chapter 3. Basic Programming



CHAPTER

FOUR

MONADS

In this chapter, we will describe a powerful abstraction known as a monad. A monad is a type constructor
m : Type → Type that comes equipped with two special operations, return and bind. If α is any type,
think of m α as being a “virtual α,” or, as some people describe it, “an α inside a box.”

For a given monad m, the function return has type Π {α : Type}, α → m α. The idea is that for any
element a : α, return a produces the virtual version of a, or puts a inside the box.

Once we are inside the box, we cannot get out; there is no general way of taking an element of m α and
obtaining an element of α. But the bind operation gives us a way of turning some operations on α into
operations inside the monad. Specifically, for a given monad m, the function bind has type Π {α β : Type},
m α → (α → m β) → m β. Suppose we have a function f that, given any element a : α, produces a
virtual element of β; in more prosaic terms, f has type α → m β. Suppose also that we have a virtual
element of α, that is, ma : m α. If we could extract from ma a corresponding element a of α, we could apply
f to it to get a virtual element of β. We cannot do that in general, but bind gives us a way of simulating
the compound operation: it applies f directly “inside the box,” and gives us an element of m β.

As an example of how bind and return can be used, given any function f : α → β, we can get a function
map f : m α → m β by defining map f ma to be bind ma (λ a, return (f a). Roughly, given ma : m
α, the bind reaches into the box, finds an associated a, and then puts f a back into the box.

For another example, given any element mma : m (m α), the expression monad.bind mma id has type m α.
This means that even though we cannot in general extract an element of β from m β, we can do it when β
itself is a virtual type, m α. The expression monad.bind mma id reaches into the m (m α) box, catches hold
of an element of m α, and simply leaves it in the m α box.

If you have never come across the notion of a monad before, these operations will seem quite mysterious. But
instances of return and bind arise in many natural ways, and the goal of this chapter is to show you some
examples. Roughly, they arise in situations where m is a type construction with the property that functions
in the ordinary realm of types can be transported, uniformly, into functions in the realm of m-types. This
should sound quite general, and so it is perhaps not that surprising that monads be instantiated in many
different ways. The power of the abstraction is not only that it provides general functions and notation the
can be used in all these various instantiations, but also that it provides a helpful way of thinking about what
they all have in common.

Lean implements the following common notation. First, we have the infix notation

ma >>= f

for bind ma f. Think of this as saying “take an element a out of the box, and send it to f.” Remember, we
are allowed to do that as long as the return type of f is of the form m β. We also have the infix notation,

ma >> mb
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for bind ma (λ a, mb). This takes an element a out of the box, ignores it entirely, and then returns mb.
These two pieces of notation are most useful in situations where the act of taking an element of the box can
be viewed as inducing a change of state. In situations like that, you can think of ma >>= f as saying “do
ma, take the result, and then send it to f.” You can then think of of ma >> mb more simply as “do ma, then
do mb.” In this way, monads provide a way of simulating features of imperative programming languages in a
functional setting. But, we will see, they do a lot more than that.

Thinking of monads in terms of performing actions while computing results is quite powerful, and Lean
provides notation to support that perspective. The expression

do a ← ma, t

is syntactic sugar for ma >>= (λ a, t). Here t is typically an expression that depends on a, and it should
have type m β for some β. So you can read do a ← ma, t as reaching into the box, extracting an a, and
then continuing the computation with t. Similarly, do s, t is syntactic sugar for s >> t, supporting the
reading “do s, then do t.” The notation supports iteration, so, for example,

do a ← s,
b ← t,
f a b,
return (g a b)

is syntactic sugar for

bind s (λ a, bind t (λ b, bind (f a b) (λ c, return (g a b)))).

It supports the reading “do s and extract a, do t and extract b, do f a b, then return the value g a b.”

Incidentally, as you may have guessed, a monad is implemented as a type class in Lean. In other words,
return really has type

Π {m : Type → Type} [monad m] {α : Type}, α → m α},

and bind really has type

Π {m : Type → Type} [monad m] {α β : Type}, m α → (α → m β) → m β.

In general, the relevant monad can be inferred from the expressions in which bind and return appear, and
the monad structure is then inferred by type class inference.

There is a constraint, namely that when we use monads all the types we apply the monad to have to live
in the same type universe. When all the types in question appear as parameters to a definition, Lean’s
elaborator will infer that constraint. When we declare variables below, we will satisfy that constraint by
explicitly putting them in the same universe.

4.1 The option monad

The option constructor provides what is perhaps the simplest example of a monad. Recall that an element
of option α is either of the form some a for some element a : α, or none. So an element a of option α
is a “virtual α” in the sense of being either an element of α or an empty promise.

The associated return is just some: given an element a of α, some a returns a virtual α. It is also clear
that we cannot go in the opposite direction: given an element ma : option α, there is no way, in general,
of producing an element of α. But we can simulate extraction of such an element as long as we are willing
to stay in the virtual land of options, by defining bind as follows:
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def bind {α β : Type} (oa : option α) (f : α → option β) :
option β :=

match oa with
| (some a) := f a
| none := none
end

If the element oa is some a, we can simply apply f to a, and otherwise we simply return none. Notice how
the do notation allows us to chain these operations:

universe u
variables {α β γ δ : Type.{u}} (oa : option α)
variables (f : α → option β) (g : α → β → option γ)

(h : α → β → γ → option δ)

example : option β :=
do a ← oa,

b ← f a,
return b

example : option δ :=
do a ← oa,

b ← f a,
c ← g a b,
h a b c

Think of f, g, and h as being partial functions on their respective domains, where a return value of none
indicates that the function is undefined for the given input. Intuitively, the second example above returns
h a (f a) (g a (f a)), assuming oa is some a and all the subterms of that expression are defined. The
expression h a (f a) (g a (f a)) does not actually type check; for example, the second argument of h
should be of type β rather than option β. But monadic notation allows us to simulate the computation of
a possibly undefined term, where the bind operation serves to percolate a value of none to the output.

4.2 The list monad

Our next example of a monad is the list monad. In the last section we thought of a function f : α →
option β as a function which, on input α, possibly returns an element of β. Now we will think of a function
f : α → list β as a function which, on input α, returns a list of possible values for the output. This
monad is sometimes also called the nondeterministic monad, since we can think of f as a computation
which may nondeterministically return any of the elements in the list.

It is easy to insert a value a : α into list α; we define return a to be just the singleton list [a]. Now,
given la : list α and f : α → list β, how should we define the bind operation la >>= f? Intuitively,
la represents any of the possible values occurring in the list, and for each such element a, f may return any
of the elements in f a. We can then gather all the possible values of the virtual application by applying f
to each element of la and merging the results into a single list:

def bind {α β : Type} (la : list α) (f : α → list β) : list β :=
join (map f la)

Since the example in the previous section used nothing more than generic monad operations, we can replay
it in the list setting:
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universe u
variables {α β γ δ : Type.{u}} (la : list α)
variables (f : α → list β) (g : α → β → list γ)

(h : α → β → γ → list δ)

example : list δ :=
do a ← la,

b ← f a,
c ← g a b,
h a b c

Now think of the computation as representing the list of all possible values of the expression h a (f a) (g
a (f a)), where the bind percolates all possible values of the subexpressions to the final output.

Notice that the final output of the expression is a list, to which we can then apply any of the usual functions
that deal with lists:

open list

variables {α β γ δ : Type} (la : list α)
variables (f : α → list β) (g : α → β → list γ) (h : α → β → γ → list δ)

example : N :=
length
(do a ← la,

b ← f a,
c ← g a b,
h a b c)

We can also move length inside the do expression, but then the output lives in N instead of a list. As a
result, we need to use return to put the result in a monad:

open list

variables {α β γ δ : Type} (la : list α)
variables (f : α → list β) (g : α → β → list γ)

(h : α → β → γ → list δ)

example : list N :=
do a ← la,

b ← f a,
c ← g a b,
return (length (h a b c))

4.3 The state monad

Let us indulge in science fiction for a moment, and suppose we wanted to extend Lean’s programming
language with three global registers, x, y, and z, each of which stores a natural number. When evaluating an
expression g (f a) with f : α → β and g : β → γ, f would start the computation with the registers
initialized to 0, but could read and write values during the course of its computation. When g began its
computation on f a, the registers would be set they way that g left them, and g could continue to read and
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write values. (To avoid questions as to how we would interpret the flow of control in terms like h (k1 a)
(k2 a), let us suppose that we only care about composing unary functions.)

There is a straightforward way to implement this behavior in a functional programming language, namely,
by making the state of the three registers an explicit argument. First, let us define a data structure to hold
the three values, and define the initial settings:

structure registers : Type := (x : N) (y : N) (z : N)

def init_reg : registers := registers.mk 0 0 0

Now, instead of defining f : α → β that operates on the state of the registers implicitly, we would define
a function f0 : α × registers → β × registers that operates on it explicitly. The function f0 would
take an input a : α, paired with the state of the registers at the beginning of the computation. It could
the do whatever it wanted to the state, and return an output b : β paired with the new state. Similarly,
we would replace g by a function g0 : β × registers → γ × registers. The result of the composite
computation would be given by (g0 (f0 (a, init_reg))).1. In other words, we would pair the value a
with the initial setting of the registers, apply f0 and then g0, and take the first component. If we wanted to
lay our hands on the state of the registers at the end of the computation, we could do that by taking the
second component.

The biggest problem with this approach is the annoying overhead. To write functions this way, we would have
to pair and unpair arguments and construct the new state explicitly. A key virtue of the monad abstraction
is that it manages boilerplate operations in situations just like these.

Indeed, the monadic solution is not far away. By currying the input, we could take the input of f0 equally well
to be α → registers → β × registers. Now think of f0 as being a function which takes an input in α
and returns an element of registers → β × registers. Moreover, think of this output as representing
a computation which starts with a certain state, and returns a value of β and a new state. Lo and behold,
that is the relevant monad.

To be precise: for any type α, the monad m α we are after is registers → α × registers. We will call
this the state monad for registers. With this notation, the function f0 described above has type α →
m β, the function g0 has type β → m γ, and the composition of the two on input a is f a >>= g. Notice
that the result is an element of m γ, which is to say, it is a computation which takes any state and returns
a value of γ paired with a new state. With do notation, we would express this instead as do b ← f a, g
b. If we want to leave the monad and extract a value in γ, we can apply this expression to the initial state
init_reg, and take the first element of the resulting pair.

The last thing to notice is that there is nothing special about registers here. The same trick would work
for any data structure that we choose to represent the state of a computation at a given point in time. We
could describe, for example, registers, a stack, a heap, or any combination of these. For every type S, Lean’s
library defines the state monad state S to be the monad that maps any type α to the type S → α × S. (In
the Lean implementation, the data is stored in a single field of a structure.) The particular monad described
above is then simply state registers.

Let us consider the return and bind operations. Given any a : α, return a is given by λ s, (a, s).
This represents the computation which takes any state s, leaves it unchanged, and inserts a as the return
value. The value of bind is tricker. Given an sa : state S α and an f : α → state S β, remember
that bind sa f is supposed to “reach into the box,” extract an element a from sa, and apply f to it inside
the monad. Now, the result of bind sa f is supposed to be an element of state S β, which is really a
function S → β × S. In other words, bind sa f is supposed to encode a function which operates on any
state to produce an element of β to a new state. Doing so is straightforward: given any state s, sa s consists
of a pair (a, s0), and applying f to a and then s0 yields the required element of β × S. Thus the def of
bind sa f is as follows:
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λ s, match (sa s) with (a, s0) := b a s0

The library also defines operations get and put as follows:

namespace hidden

def get {S : Type} : state S S :=
⟨λ s, (s, s)⟩

def put {S : Type} : S → state S unit := λ s0, ⟨λ s, ((), s0)⟩

end hidden

With the argument S implicit, get is simply the state computation that does not change the current state,
but also returns it as a value. The value put s0 is the state computation which replaces any state s by s0
and returns unit. Notice that it is convenient to use unit for the output type any operation that does not
return a value, though it may change the state.

Returning to our example, we can implement the register state monad and more focused get and put
operations as follows:

def init_reg : registers :=
registers.mk 0 0 0

@[reducible] def reg_state := state registers

def get_x : reg_state N :=
do s ← get, return (registers.x s)

def get_y : reg_state N :=
do s ← get, return (registers.y s)

def get_z : reg_state N :=
do s ← get, return (registers.z s)

def put_x (n : N) : reg_state unit :=
do s ← get,

put (registers.mk n (registers.y s) (registers.z s))

def put_y (n : N) : reg_state unit :=
do s ← get,

put(registers.mk (registers.x s) n (registers.z s))

def put_z (n : N) : reg_state unit :=
do s ← get,

put (registers.mk (registers.x s) (registers.y s) n)

We can then write a little register program as follows:

open nat

def foo : reg_state N :=
do put_x 5,

put_y 7,
(continues on next page)
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x ← get_x,
put_z (x + 3),
y ← get_y,
z ← get_z,
put_y (y + z),
y ← get_y,
return (y + 2)

To see the results of this program, we have to “run” it on the initial state:

#reduce foo.run init_reg

The result is the pair (17, {x := 5, y := 15, z := 8}), consisting of the return value, y, paired with
the values of the three registers.

4.4 The IO monad

We can finally explain how Lean handles input and output: the constant io is axiomatically declared to
be a monad with certain supporting operations. It is a kind of state monad, but in contrast to the ones
discussed in the last section, here the state is entirely opaque to Lean. You can think of the state as “the real
world,” or, at least, the status of interaction with the user. Lean’s axiomatically declared constants include
the following:

import system.io
open io

#check (@put_str : string → io unit)
#check (@get_line : io string)

The expression put_str s changes the io state by writing s to output; the return type, unit, indicates
that no meaningful value is returned. The expression get_line, in contrast, does not take any arguments.
However you want to think of the change in io state, a string value is returned inside the monad. When we
use the native virtual machine interpretation, thinking of the io monad as representing a state is somewhat
heuristic, since within the Lean language, there is nothing that we can say about it. But when we run a Lean
program, the interpreter does the right thing whenever it encounters the bind and return operations for the
monad, as well as the constants above. In particular, in the example below, it ensures that the argument to
put_str is evaluated before the output is sent to the user, and that the expressions are printed in the right
order.

#eval put_str "hello " >> put_str "world!" >> put_str (to_string (27 * 39))

4.5 Related type classes

In addition to the monad type class, Lean defines all the following abstract type classes and notations.

open monad function
universe variables u v

namespace hidden
(continues on next page)
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class functor (f : Type u → Type v) : Type (max (u+1) v) :=
(map : Π {α β : Type u}, (α → β) → f α → f β)
(map_const : Π {α β : Type u}, α → f β → f α := λ α β, map ◦ const β)

local infixr ` <$> `:100 := functor.map

end hidden

namespace hidden'

infixl ` <*> `:60 := has_seq.seq

class applicative (f : Type u → Type v) extends functor f, has_pure f, has_seq f, has_
↪→seq_left f, has_seq_right f :=
(map := λ _ _ x y, pure x <*> y)
(seq_left := λ α β a b, const β <$> a <*> b)
(seq_right := λ α β a b, const α id <$> a <*> b)

class has_orelse (f : Type u → Type v) : Type (max (u+1) v) :=
(orelse : Π {α : Type u}, f α → f α → f α)

infixr ` <|> `:2 := has_orelse.orelse

end hidden'

The monad class extends both functor and applicative, so both of these can be seen as even more abstract
versions of monad. On the other hand, not every monad is alternative, and in the next chapter we will
see an important example of one that is. One way to think about an alternative monad is to think of it as
representing computations that can possibly fail, and, moreover, Intuitively, an alternative monad can be
thought of supporting definitions that say “try a first, and if that doesn’t work, try b.” A good example is
the option monad, in which we can think of an element none as a computation that has failed. If a and
b are elements of option α for some type α, we can define a <|> b to have the value a if a is of the form
some a0, and b otherwise.
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CHAPTER

FIVE

WRITING TACTICS

5.1 A First Look at the Tactic Monad

The canonical way to invoke a tactic in Lean is to use the by keyword within a Lean expression. Suppose
we write the following:

variables a b : Prop

example : a → b → a ∧ b :=
by _

Lean expects something of type tactic unit to fill the underscore, where tactic refers to the tactic monad.
When the elaborator processes this definition, it elaborates everything outside the by invocation first (in this
case, just the statement of the theorem), and then calls on the Lean virtual machine to execute the tactic.
When doing so, the virtual machine interprets any axiomatically declared meta constant as references to
internal Lean functions that implement the functionality of the tactic monad.

The tactic monad can be thought of as a combination of a state monad (where the internal “state” as accessed
and acted on by the meta constant primitives) and the option monad. Because it is a monad, we have the
usual do notation. So, if r, s, and t are tactics, you should think of

do a ← r,
b ← s,
t

as meaning “apply tactic r to the state, and store the return result in a; apply tactic s to the state, and
store the return result in b; then, finally, apply tactic t to the state.” Moreover, any tactic can fail, which
is analogous to a return value of none in the option monad. In the example above, if any of r, s, or t fail,
then the compound expression has failed.

There is an additional, really interesting feature of the tactic monad: it is an alternative monad, in the sense
described at the end of the last chapter. This is used to implement backtracking. If s and t are monads,
the expression s <|> t can be understood as follows: “do s, and if that succeeds, return the corresponding
return value; otherwise, undo any changes to the state that s may have produced, and do t instead.” This
allows us to try s and, if it fails, go on to try t as though the first attempt never happened.

When the tactic expression after a by is invoked, the tactic wakes up and says “Whoa! I’m in a monad!”
This is just a colorful way of saying that the virtual machine expects a function that acts on the tactic
state in a certain way, and interprets primitive operations on the tactic state in terms of functions that are
implemented internal to Lean. At any rate, when it wakes up, it can start to look around and assess its
current state. The goal of this section is to give you a first look at of some of the things it can do there.
Don’t worry if some of the expressions seem mysterious; they will be explained in the sections that follow.

One thing the tactic can do is print a message to the outside world:
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open tactic

example (a b : Prop) : a → b → a ∧ b :=
by do trace "Hi, Mom!",

admit

When the file is executed, Lean issues an error message to the effect that the tactic has failed to fill the
relevant placeholder, which is what it is supposed to do. But the trace message is printed during the
execution, providing us with a glimpse of its inner workings. We can actually trace value of any type that
Lean can coerce to a string output, and we will see that this includes a number of useful types. The admit
tactic is a tactic version of sorry. Note that we use open tactic to open the tactic namespace and access
the core tactic library. We will hide this line in the code snippets that follow.

Another thing we can do is trace the current tactic state:

example (a b : Prop) : a → b → a ∧ b :=
by do trace "Hi, Mom!",

trace_state,
admit

Now the output includes the list of goals that are active in the tactic state, each with a local context that
includes the local variables and hypotheses. In this case there is only one:

Hi, Mom!
a b : Prop
⊢ a → b → a ∧ b

This points to an important fact: the internal, and somewhat mysterious, tactic state includes at least a list
of goals. In fact, it includes much more: every tactic is invoked in a rich environment that includes all the
objects and declarations that are present when the tactic is invoked, as well as notations, option declarations,
and so on. In most cases, however, the list of goals is most directly relevant to the task at hand.

Let us dispense with the trace messages now, and start to prove the theorem by introducing the first two
hypotheses.

example (a b : Prop) : a → b → a ∧ b :=
by do eh1 ← intro `h1,

eh2 ← intro `h2,
skip

The backticks indicate that h1 and h2 are names; we will discuss these below. The tactic skip is a do-nothing
tactic, simply included to ensure that the resulting expression has type tactic unit.

We can now do some looking around. The meta_constant called target has type tactic expr, and returns
the type of the goal. The type expr, like name, will be discussed below; it is designed to reflect the internal
representation of Lean expressions, so, roughly, via meta-programming glue, the expr type allows us to
manipulate Lean expressions in Lean itself. In particular, we can ask the tactic to print the current goal:

example (a b : Prop) : a → b → a ∧ b :=
by do eh1 ← intro `h1,

eh2 ← intro `h2,
target >>= trace,
admit

In this case, the output is a ∧ b, as we would expect. We can also ask the tactic to print the elements of
the local context.
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example (a b : Prop) : a → b → a ∧ b :=
by do eh1 ← intro `h1,

eh2 ← intro `h2,
local_context >>= trace,
admit

This yields the list [a, b, h1, h2]. We already happen to have representations of h1 and h2, because they
were returned by the intro tactic. But we can extract the other expressions in the local context given their
names:

example (a b : Prop) : a → b → a ∧ b :=
by do intro `h1,

intro `h2,
ea ← get_local `a,
eb ← get_local `b,
trace (to_string ea ++ ", " ++ to_string eb),
admit

Notice that ea and eb are different from a and b; they have type expr rather than Prop. They are the
internal representations of the latter expressions. At present, there is not much for us to do with these
expressions other than print them out, so we will drop them for now.

In any case, to prove the goal, we can proceed to invoke any of the Lean’s standard tactics. For example,
this will work:

example (a b : Prop) : a → b → a ∧ b :=
by do intro `h1,

intro `h2,
split,
repeat assumption

We can also do it in a more hands-on way:

example (a b : Prop) : a → b → a ∧ b :=
by do eh1 ← intro `h1,

eh2 ← intro `h2,
mk_const ``and.intro >>= apply,
exact eh1,
exact eh2

The double-backticks will also be explained below, but the general idea is that the third line of the tactic
builds an expr that reflects the and.intro declaration in the Lean environment, and applies it. The applyc
tactic combines these two steps:

example (a b : Prop) : a → b → a ∧ b :=
by do eh1 ← intro `h1,

eh2 ← intro `h2,
applyc ``and.intro,
exact eh1,
exact eh2

We can also finish the proof as follows:
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example (a b : Prop) : a → b → a ∧ b :=
by do eh1 ← intro `h1,

eh2 ← intro `h2,
e ← to_expr ```(and.intro h1 h2),
exact e

Here, the construct ```(...) is used to build a pre-expression, the tactic to_expr elaborates it and converts
it to an expression, and the exact tactic applies it. In the next section, we will see even more variations on
constructions like these, including tactics that would enable us to construct the expression and.intro h1
h2 more explicitly.

The do block in this example has type tactic unit, and can be broken out as an independent tactic.

meta def my_tactic : tactic unit :=
do eh1 ← intro `h1,

eh2 ← intro `h2,
e ← to_expr ``(and.intro %%eh1 %%eh2),
exact e

example (a b : Prop) : a → b → a ∧ b :=
by my_tactic

Of course, my_tactic is not a very exciting tactic; we designed it to prove one particular theorem, and it will
only work on examples that have the very same shape. But we can write more intelligent tactics that inspect
the goal, the local hypotheses, and the environment, and then do more useful things. The mechanism is
exactly the same: we construct an expression of type tactic unit, and ask the virtual machine to execute
it at elaboration time to solve the goal at hand.

5.2 Names and Expressions

Suppose we write an ordinary tactic proof in Lean:

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
begin
split,
exact and.right h,
exact and.left h

end

This way of writing the tactic proof suggests that the h in the tactic block refers to the expression h : a ∧
b in the list of hypotheses. But this is an illusion; what h really refers to is the first hypothesis named h that
is in the local context of the goal in the state when the tactic is executed. This is made clear, for example,
by the fact that earlier lines in the proof can change the name of the hypothesis:

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
begin
revert h,
intro h',
split,
exact and.right h',
exact and.left h'

end
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Now writing exact and.right h would make no sense. We could, alternatively, contrive to make h denote
something different from the original hypothesis. This often happens with the cases and induction tactics,
which revert hypotheses, peform an action, and then reintroduce new hypotheses with the same names.

Metaprogramming in Lean requires us to be mindful of and explicit about the distinction between expressions
in the current environment, like h : a ∧ b in the hypothesis of the example, and the Lean objects that
we use to act on the tactic state, such as the name “h” or an object of type expr. Without using the
begin...end front end, we can construct the proof as follows:

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

to_expr ```(and.right h) >>= exact,
to_expr ```(and.left h) >>= exact

This tells Lean to elaborate the expressions and.right h and and.left h in the context of the current goal,
and then apply them. The begin...end construct is essentially a front end that interprets the proof above
in these terms.

To understand what is going on in situations like this, it is important to know that Lean’s metaprogramming
framework provides three distinct Lean types that are relevant to constructing syntactic expressions:

• the type name, representing hierarchical names

• the type expr, representing expressions

• the type pexpr, representing pre-expressions

Let us consider each one of them, in turn.

Hierarchical names are denoted in ordinary .lean files with expressions like foo.bar.baz or nat.mul_comm.
They are used as identifiers that reference defined constants in Lean, but also for local variables, attributes,
and other objects. Their Lean representations are defined in init/meta/name.lean, together with some
operations that can be performed on them. But for many purposes we can be oblivious to the details.
Whenever we type an expression that begins with a backtick that is not followed by an open parenthesis,
Lean’s parser translates this to the construction of the associated name. In other words, `nat.mul_comm is
simply notation for the compound name with components nat and mul_comm.

When metaprogramming, we often use names to refer to definitions and theorems in the Lean environment.
In situations like that, it is easy to make mistakes. In the example below, the tactic definition is accepted,
but its application fails:

open tactic

namespace foo

theorem bar : true := trivial

meta def my_tac : tactic unit :=
mk_const `bar >>= exact

-- example : true := by my_tac -- fails

end foo

The problem is that the proper name for the theorem is foo.bar rather than bar; if we replace `bar by
`foo.bar, the example is accepted. The mk_const tactic takes an arbitrary name and attempts to resolve it
when the tactic is invoked, so there is no error in the definition of the tactic. The error is rather that when
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we wrote `bar we had in mind a particular theorem in the environment at the time, but we did not identify
it correctly.

For situations like these, Lean provides double-backtick notation. The following example succeeds:

open tactic

namespace foo

theorem bar : true := trivial

meta def my_tac : tactic unit :=
mk_const ``bar >>= exact

example : true := by my_tac -- fails

end foo

It also succeeds if we replace ``bar by ``foo.bar. The double-backtick asks the parser to resolve the
expression with the name of an object in the environment at parse time, and insert the relevant name. This
has two advantages:

• if there is no such object in the environment at the time, the parser raises an error; and

• assuming it does find the relevant object in the environment, it inserts the full name of the object,
meaning we can use abbreviations that make sense in the context where we are writing the tactic.

As a result, it is a good idea to use double-backticks whenever you want to refer to an existing definition or
theorem.

When writing tactics, it is often necessary to generate a fresh name. You can use mk_fresh_name for that:

example (a : Prop) : a → a :=
by do n ← mk_fresh_name,

intro n,
hyp ← get_local n,
exact hyp

A variant, get_unused_name, lets you suggest a name. If the name is in use, Lean will append a numeral to
avoid duplication.

example (a : Prop) : a → a :=
by do n ← get_unused_name "h",

intro n,
hyp ← get_local n,
exact hyp

The type expr reflects the internal representation of Lean expressions. It is defined inductively in the file
expr.lean, but when evaluating expressions that involve terms of type expr, the virtual machine uses the
internal C++ representations, so each constructor and the eliminator for the type are translated to the
corresponding C++ functions. Expressions include the sorts Prop, Type1, Type2, …, constants of each type,
applications, lambdas, Pi types, and let definitions. The also include de Bruijn indices (with constructor
var), metavariables, local constants, and macros.

The whole purpose of tactic mode is to construct expressions, and so this data type is fundamental. We have
already seen that the target tactic returns the current goal, which is an expression, and that local_context
returns the list of hypotheses that can be used to solve the current goal, that is, a list of expressions.
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Returning to the example at the start of this section, let us consider ways of constructing the expressions
and.left h and and.right h more explicitly. The following example uses the mk_mapp tactic.

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

eh ← get_local `h,
mk_mapp ``and.right [none, none, some eh] >>= exact,
mk_mapp ``and.left [none, none, some eh] >>= exact

In this example, the invocations of mk_mapp retrieve the definition of and.right and and.left, respectively.
It makes no difference whether the arguments to those theorems have been marked implicit or explicit;
mk_mapp ignores those annotations, and simply applies that theorem to all the arguments in the subsequent
list. Thus the first argument to mk_mapp is a name, while the second argument has type list (option
expr). Each none entry in the list tells mk_mapp to treat that argument as implicit and infer it using type
inference. In contrast, an entry of the form some t specifies t as the corresponding argument.

The tactic mk_app is an even more rudimentary application builder. It takes the name of the operator,
followed by a complete list of its arguments.

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

ea ← get_local `a,
eb ← get_local `b,
eh ← get_local `h,
mk_app ``and.right [ea, eb, eh] >>= exact,
mk_app ``and.left [ea, eb, eh] >>= exact

You can send less than the full list of arguments to mk_app, but the arguments you send are assumed to be
the final arguments, with the earlier ones made implicit. Thus, in the example above, we could send instead
[eb, eh] or simply [eh], because the earlier arguments can be inferred from these.

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

eh ← get_local `h,
mk_app ``and.right [eh] >>= exact,
mk_app ``and.left [eh] >>= exact

Finally, as indicated in the last section, you can also use mk_const to construct a constant expression from
the corresponding name:

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

eh ← get_local `h,
mk_const ``and.right >>= apply,
exact eh,
mk_const ``and.left >>= apply,
exact eh

We have also seen above that it is possible to use to_expr to elaborate expressions at executation time, in
the context of the current goal.

open tactic

-- BEGIN
example (a b : Prop) (h : a ∧ b) : b ∧ a :=

(continues on next page)
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by do split,
to_expr ```(and.right h) >>= exact,
to_expr ```(and.left h) >>= exact

-- END

Here, the expressions ```(and.right h) and ```(and.left h) are pre-expressions, that is, objects of type
pexpr. The interface to pexpr can be found in the file pexpr.lean, but the type is largely opaque from
within Lean. The canonical use is given by the example above: when Lean’s parser encounters an expression
of the form ```(...), it constructs the corresponding pexpr, which is simply an internal representation
of the unelaborated term. The to_expr tactic then sends that object to the elaborator when the tactic is
executed.

Note that the backtick is used in two distinct ways: an expression of the form `n, without the parentheses,
denotes a name, whereas an expression of the form `(...), with parentheses, denotes a pexpr. Though this
may be confusing at first, it is easy to get used to the distinction, and the notation is quite convenient.

Lean’s pre-expression mechanism also supports the use of anti-quotation, which allows a tactic to tell the
elaborator to insert an expression into a pre-expression at runtime. Returning to the example above, suppose
we are in a situation where instead of the name h, we have the corresponding expression, eh, and want to use
that to construct the term. We can insert it into the pre-expression by preceding it with a double-percent
sign:

example (a b : Prop) (h : a ∧ b) : b ∧ a :=
by do split,

eh ← get_local `h,
to_expr ``(and.right %%eh) >>= exact,
to_expr ``(and.left %%eh) >>= exact

When the tactic is executed, Lean elaborates the pre-expressions given by ``(...), with the expression eh
inserted in the right place. The difference between ``(...) and ```(...) is that the first resolves the names
contained in the expression when the tactic is defined, whereas the second resolves them when the tactic is
executed. Since the only name occurring in and.left %%eh is and.left, it is better to resolve it right away.
However, in the expression and.right h above, h only comes into existence when the tactic is executed, and
so we need to use the triple backtick.

Finally, Lean can handle pattern matching on pre-expressions. To do so, use a single backtick, and use
antiquotations to introduce variables in the patterns. The following tactic retrieves the goal, and takes
action depending on its form.

meta def do_something : tactic unit :=
do t ← target,

match t with
| `(%%a ∧ %%b) := split >> skip
| `(%%a → %%b) := do h ← get_unused_name "h",

intro h,
skip

| _ := try assumption
end

example (a b c : Prop) : a → b → a → a ∧ b :=
begin
do_something, do_something, do_something, do_something, do_something, do_something
end

(continues on next page)
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example (a b c : Prop) : a → b → a → a ∧ b :=
begin
do_something, do_something, do_something, do_something, assumption, assumption
end

example (a b c : Prop) : a → b → a → a ∧ b :=
by repeat { do_something }

5.3 Examples

When it comes to writing tactics, you have all the computable entities of Lean’s standard library at your
disposal, including lists, natural numbers, strings, product types, and so on. This makes the tactic monad a
powerful mechanism for writing metaprograms. Some of Lean’s most basic tactics are implemented internally
in C++, but many of them are defined from these in Lean itself.

The entry point for the tactic library is the file init/meta/tactic.lean, where you can find the details of
the interface, and see a number of basic tactics implemented in Lean. For example, here is the definition of
the assumption tactic:

meta def find_same_type : expr → list expr → tactic expr
| e [] := failed
| e (h :: hs) :=

do t ← infer_type h,
(unify e t >> return h) <|> find_same_type e hs

meta def assumption : tactic unit :=
do ctx ← local_context,

t ← target,
h ← find_same_type t ctx,
exact h

<|> fail "assumption tactic failed"

The expression find_same_type t es tries to find in es an expression with type definitionally equal to t
in the list of expressions es, by a straightforward recursion on the list. The infer_type tactic calls Lean’s
internal type inference mechanism to infer to the type of an expression, and the unify tactic tries to unify two
expressions, instantiating metavariables if necessary. Note the use of the orelse notation: if the unification
fails, the procedure backtracks and continues to try the remaining elements on the list. The fail tactic
announces failure with a given string. The failed tactic simply fails with a generic message, “tactic failed.”

One can even manipulate data structures that include tactics themselves. For example, the first tactic
takes a list of tactics, and applies the first one that succeeds:

meta def first {α : Type} : list (tactic α) → tactic α
| [] := fail "first tactic failed, no more alternatives"
| (t::ts) := t <|> first ts

It fails if none of the tactics on the list succeeds. Consider the following example:

meta def destruct_conjunctions : tactic unit :=
repeat (do
l ← local_context,

(continues on next page)
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first $ l.map (λ h, do
ht ← infer_type h >>= whnf,
match ht with
| `(and %%a %%b) := do
n ← get_unused_name `h none,
mk_mapp ``and.left [none, none, some h] >>= assertv n a,
n ← get_unused_name `h none,
mk_mapp ``and.right [none, none, some h] >>= assertv n b,
clear h

| _ := failed
end))

The repeat tactic simply repeats the inner block until it fails. The inner block starts by getting the local
context. The expression l.map ... is just shorthand for list.map ... l; it applies the function in ... to
each element of l and returns the resulting list, in this case a list of tactics. The first function then calls
each one sequentially until one of them succeeds. Note the use of the dollar-sign for function application. In
general, an expression f $ a denotes nothing more than f a, but the binding strength is such that you do
not need to use extra parentheses when a is a long expression. This provides a convenient idiom in situations
exactly like the one in the example.

Some of the elements of the body of the main loop will now be familiar. For each element h of the context,
we infer the type of h, and reduce it to weak head normal form. (We will discuss weak head normal form in
the next section.) Assuming the type is an and, we construct the terms and.left h and and.right h and
add them to the context with a fresh name. The clear tactic then deletes h itself.

Remember that when writing meta defs you can carry out arbitrary recursive calls, without any guarantee
of termination. You should use this with caution when writing tactics; if there is any chance that some
unforseen circumstance will result in an infinite loop, it is wiser to use a large cutoff to prevent the tactic
from hanging. Even the repeat tactic is implemented as a finite iteration:

meta def repeat_at_most : nat → tactic unit → tactic unit
| 0 t := skip
| (succ n) t := (do t, repeat_at_most n t) <|> skip

meta def repeat : tactic unit → tactic unit :=
repeat_at_most 100000

But 100,000 iterations is still enough to get you into trouble if you are not careful.

5.4 Reduction

[This section still under construction. It will discuss the various types of reduction, the notion of weak head
normal form, and the various transparency settings. It will use some of the examples that follow.]

open tactic

set_option pp.beta false

section
variables {α : Type} (a b : α)

(continues on next page)
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(continued from previous page)

example : (λ x : α, a) b = a :=
by do goal ← target,

match expr.is_eq goal with
| (some (e1, e2)) := do trace e1,

whnf e1 >>= trace,
reflexivity

| none := failed
end

example : (λ x : α, a) b = a :=
by do goal ← target,

match expr.is_eq goal with
| (some (e1, e2)) := do trace e1,

whnf e1 transparency.none >>= trace,
reflexivity

| none := failed
end

attribute [reducible]
definition foo (a b : α) : α := a

example : foo a b = a :=
by do goal ← target,

match expr.is_eq goal with
| (some (e1, e2)) := do trace e1,

whnf e1 transparency.none >>= trace,
reflexivity

| none := failed
end

example : foo a b = a :=
by do goal ← target,

match expr.is_eq goal with
| (some (e1, e2)) := do trace e1,

whnf e1 transparency.reducible >>= trace,
reflexivity

| none := failed
end

end

5.5 Metavariables and Unification

[This section is still under construction. It will discuss the notion of a metavariable and its local context,
with the interesting bit of information that goals in the tactic state are nothing more than metavariables.
So the goal list is really just a list of metavariables, which can help us make sense of the get_goals and
set_goals tactics. It will also discuss the unify tactic.]
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CHAPTER

SIX

WRITING AUTOMATION

The goal of this chapter is to provide some examples that illustrate the ways that metaprogramming in Lean
can be used to implement automated proof procedures.

6.1 A Tableau Prover for Classical Propositional Logic

In this section, we design a theorem prover that is complete for classical propositional logic. The method
is essentially that of tableaux theorem proving, and, from a proof-theoretic standpoint, can be used to
demonstrate the completeness of cut-free sequent calculi.

The idea is simple. If a, b, c, and d are formulas of propositional logic, the sequent a, b, c ⊢ d represents
the goal of proving that d follows from a, b and c, and d. The fact that they are propositional formulas means
that they are built up from variables of type Prop and the constants true and false using the connectives
∧ ∨ → ↔ ¬. The proof procedure proceeds as follows:

• Negate the conclusion, so that the goal becomes a, b, c, ¬ d ⊢ false.

• Put all formulas into negation-normal form. In other words, eliminate → and ↔ in terms of the other
connectives, and using classical identities to push all equivalences inwards.

• At that stage, all formulas are built up from literals (propositional variables and negated propositional
variables) using only ∧ and ∨. Now repeatedly apply all of the following proof steps:

– Reduce a goal of the form Γ, a ∧ b ⊢ false to the goal Γ, a, b ⊢ false, where Γ is any set
of propositional formulas.

– Reduce a goal of the form Γ, a ∨ b ⊢ false to the pair of goals Γ, a ⊢ false and Γ, b ⊢
false.

– Prove any goal of the form Γ, a, ¬ a ⊢ false in the usual way.

It is not hard to show that this is complete. Each step preserves validity, in the sense that the original goal is
provable if and only if the new ones are. And, in each step, the number of connectives in the goal decreases.
If we ever face a goal in which the first two rules do not apply, the goal must consist of literals. In that case,
if the last rule doesn’t apply, then no propositional variable appears with its negation, and it is easy to cook
up a truth assignment that falsifies the goal.

In fact, our procedure will work with arbitrary formulas at the leaves. It simply applies reductions and rules
as much as possible, so formulas that begin with anything other than a propositional connective are treated
as black boxes, and act as propositional atoms.

First, let us open the namespaces we will use:

open expr tactic classical

The next step is to gather all the facts we will need to put formulas in negation-normal form.
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section logical_equivalences
local attribute [instance] prop_decidable
variables {a b : Prop}

theorem not_not_iff (a : Prop) : ¬¬a ↔ a :=
iff.intro classical.by_contradiction not_not_intro

theorem implies_iff_not_or (a b : Prop) : (a → b) ↔ (¬ a ∨ b) :=
iff.intro
(λ h, if ha : a then or.inr (h ha) else or.inl ha)
(λ h, or.elim h (λ hna ha, absurd ha hna) (λ hb ha, hb))

theorem not_and_of_not_or_not (h : ¬ a ∨ ¬ b) : ¬ (a ∧ b) :=
assume ⟨ha, hb⟩, or.elim h (assume hna, hna ha) (assume hnb, hnb hb)

theorem not_or_not_of_not_and (h : ¬ (a ∧ b)) : ¬ a ∨ ¬ b :=
if ha : a then
or.inr (show ¬ b, from assume hb, h ⟨ha, hb⟩)

else
or.inl ha

theorem not_and_iff (a b : Prop) : ¬ (a ∧ b) ↔ ¬a ∨ ¬b :=
iff.intro not_or_not_of_not_and not_and_of_not_or_not

theorem not_or_of_not_and_not (h : ¬ a ∧ ¬ b) : ¬ (a ∨ b) :=
assume h1, or.elim h1 (assume ha, h^.left ha) (assume hb, h^.right hb)

theorem not_and_not_of_not_or (h : ¬ (a ∨ b)) : ¬ a ∧ ¬ b :=
and.intro (assume ha, h (or.inl ha)) (assume hb, h (or.inr hb))

theorem not_or_iff (a b : Prop) : ¬ (a ∨ b) ↔ ¬ a ∧ ¬ b :=
iff.intro not_and_not_of_not_or not_or_of_not_and_not

end logical_equivalences

We can now use Lean’s built-in simplifier to do the normalization:

meta def normalize_hyp (lemmas : simp_lemmas) (hyp : expr) : tactic unit :=
do try (simp_hyp lemmas [] hyp)

meta def normalize_hyps : tactic unit :=
do hyps ← local_context,

lemmas ← (monad.mapm mk_const [``iff_iff_implies_and_implies,
``implies_iff_not_or, ``not_and_iff, ``not_or_iff, ``not_not_iff,
``not_true_iff, ``not_false_iff] >>= simp_lemmas.mk.append),

monad.mapm' (normalize_hyp lemmas) hyps

The tactic normalize_hyp just simplifies the given hypothesis with the given list of lemmas. The try
combinator ensures that the tactic is deemed successful even if no simplifications are necessary. The tactic
normalize_hyps gathers the local context, turns the list of names into a list of expressions by applying
the mk_const tactic to each one, and then calls normalize_hyp on each element of the context with those
lemmas. The for’ tactic, like the for tactic, applies the second argument to each element of the first, but
it returns unit rather than accumulate the results in a list.

We can test the result:
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example (p q r : Prop) (h1 : ¬ (p ↔ (q ∧ ¬ r))) (h2 : ¬ (p → (q → ¬ r))) : true :=
by do normalize_hyps,

trace_state,
triv

The result is as follows:

p q r : Prop,
h1 : p ∧ (r ∨ ¬q) ∨ q ∧ ¬p ∧ ¬r,
h2 : p ∧ q ∧ r
⊢ true

The next five tactics handle the task of splitting conjunctions.

open tactic expr

meta def add_fact (prf : expr) : tactic unit :=
do nh ← get_unused_name `h none,

p ← infer_type prf,
assertv nh p prf,
return ()

meta def is_conj (e : expr) : tactic bool :=
do t ← infer_type e,

return (is_app_of t `and)

meta def add_conjuncts : expr → tactic unit | e :=
do e1 ← mk_app `and.left [e],

monad.cond (is_conj e1) (add_conjuncts e1) (add_fact e1),
e2 ← mk_app `and.right [e],
monad.cond (is_conj e2) (add_conjuncts e2) (add_fact e2)

meta def split_conjs_at (h : expr) : tactic unit :=
do monad.cond (is_conj h)

(add_conjuncts h >> clear h)
skip

meta def split_conjs : tactic unit :=
do l ← local_context,

monad.mapm' split_conjs_at l

The tactic add_fact prf takes a proof of a proposition p, and adds p the the local context with a fresh
name. Here, get_unused_name \`h none generates a fresh name of the form h_n, for a numeral n. The
tactic is_conj infers the type of a given expression, and determines whether or not it is a conjunction. The
tactic add_conjuncts e assumes that the type of e is a conjunction and adds proofs of the left and right
conjuncts to the context, recursively splitting them if they are conjuncts as well. The tactic split_conjs_at
h tests whether or not the hypothesis h is a conjunction, and, if so, adds all its conjuncts and then clears it
from the context. The last tactic, split_conjs, applies this to every element of the context.

We need two more small tactics before we can write our propositional prover. The first reduces the task of
proving a statement p from some hypotheses to the task of proving falsity from those hypotheses and the
negation of p.
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meta def deny_conclusion : tactic unit :=
do refine ```(classical.by_contradiction _),

nh ← get_unused_name `h none,
intro nh,
return ()

The refine tactic applies the expression in question to the goal, but leaves any remaining metavariables for
us to fill. The theorem classical.by_contradiction has type ∀ {p : Prop}, (¬p → false) → p, so
applying this theorem proves the goal but leaves us with the new goal of proving ¬p → false from the
same hypotheses, at which point, we can use the introduction rule for implication. If we omit the return
(), we will get an error message, because deny_conclusion is supposed to have type tactic unit, but the
intro tactic returns an expression.

The next tactic finds a disjunction among the hypotheses, or returns the option.none if there aren’t any.

meta def find_disj : tactic (option expr) :=
do l ← local_context,

(first $ l.map
(λ h, do t ← infer_type h,

cond (is_app_of t `or)
(return (option.some h)) failed)) <|>

return none

Our propositional prover can now be implemented as follows:

meta def prop_prover_aux : N → tactic unit
| 0 := fail "prop prover max depth reached"
| (nat.succ n) :=

do split_conjs,
contradiction <|>
do (option.some h) ← find_disj |

fail "prop_prover failed: unprovable goal",
cases h,
prop_prover_aux n,
prop_prover_aux n

meta def prop_prover : tactic unit :=
do deny_conclusion,

normalize_hyps,
prop_prover_aux 30

The tactic prop_prover denies the conclusion, reduces the hypotheses to negation-normal form, and calls
prop_prover_aux with a maximum splitting depth of 30. The tactic prop_prover_aux executes the following
simple loop. First, it splits any conjunctions in the hypotheses. Then it tries applying the contradiction
tactic, which will find a pair of contradictory literals, p and ¬ p, if there is one. If that does not succeed, it
looks for a disjunction h among the hypotheses. At this stage, if there aren’t any disjunctions, we know that
the goal is not propositionally valid. On the other hand, if there is a disjunction, prop_prover_aux calls
the cases tactic to split the disjunction, and then applies itself recursively to each of the resulting subgoals,
decreasing the splitting depth by one.

Notice the pattern matching in the do notation:

(option.some h) ← find_disj |
fail "prop_prover failed: unprovable goal"
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This is shorthand for the use of the bind operation in the tactic monad to extract the result of find_disj,
together with the use of a match statement to extract the result. The expression after the vertical bar is the
value returned for any other case in the pattern match; in this case, it is the value returned if find_disj
returns none. This is a common idiom when writing tactics, and so the compressed notation is handy.

All this is left for us to do is to try it out:

section
variables a b c d : Prop

example (h1 : a ∧ b) (h2 : b ∧ ¬ c) : a ∨ c :=
by prop_prover

example (h1 : a ∧ b) (h2 : b ∧ ¬ c) : a ∧ ¬ c :=
by prop_prover

-- not valid
-- example (h1 : a ∧ b) (h2 : b ∧ ¬ c) : a ∧ c :=
-- by prop_prover

example : ((a → b) → a) → a :=
by prop_prover

example : (a → b) ∧ (b → c) → a → c :=
by prop_prover

example (α : Type) (x y z w : α) :
x = y ∧ (x = y → z = w) → z = w :=

by prop_prover

example : ¬ (a ↔ ¬ a) :=
by prop_prover

end
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